Ductile crystalline-amorphous nanolaminates.

نویسندگان

  • Yinmin Wang
  • Ju Li
  • Alex V Hamza
  • Troy W Barbee
چکیده

It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper-zirconium glass nanolaminates. These nanocrystalline-amorphous nanolaminates exhibit a high flow stress of 1.09 +/- 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 +/- 1.7%, which is six to eight times higher than that typically observed in conventional crystalline-crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous-crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates.

Deformation of ductile crystalline-amorphous nanolaminates is not well understood due to the complex interplay of interface mechanics, shear banding, and deformation-driven chemical mixing. Here we present indentation experiments on 10 nm nanocrystalline Cu-100 nm amorphous CuZr model multilayers to study these mechanisms down to the atomic scale. By using correlative atom probe tomography and ...

متن کامل

Amorphous metal foams

As recently demonstrated, amorphous metal foams are highly ductile in compression, and thus offer attractive compromises in mechanical and physical properties between crystalline metallic and ceramic foams. Challenges associated with fabrication of amorphous metal foams are critically assessed in the context of current and future processing methods, and conclusions are drawn regarding the prope...

متن کامل

Acoustic emissions analysis of damage in amorphous and crystalline metal foams

Acoustic emission methods are used to investigate the nature and evolution of microfracture damage during uniaxial compression of ductile amorphous and brittle crystalline metal foams made from a commercial Zr-based bulk metallic glass, and to compare this behavior against that of aluminum-based foam of similar structure. For the amorphous foam, acoustic activity reveals evolution of the damage...

متن کامل

Amorphous Mg-based metal foams with ductile hollow spheres

To date, high compressive ductility and energy absorption have been achieved in amorphous metal foams based on high-toughness Pdand Zr-based metallic glasses and are known to result from two extrinsic toughening mechanisms: bending of struts and shear band arrest by pores. We study here a syntactic amorphous metallic foam produced by infiltration of a bed of hollow crystalline iron spheres with...

متن کامل

Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing

We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μm to 5 μm) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more frag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 27  شماره 

صفحات  -

تاریخ انتشار 2007